Kamis, 13 Maret 2014

Entalpi dan Perubahan Entalpi

Entalpi dan Perubahan Entalpi (ΔH)
Entalpi (H) adalah jumlah energi yang dimiliki sistem pada tekanan tetap. Entalpi (H) dirumuskan sebagai jumlah energi yang terkandung dalam sistem (E) dan kerja (W).
H = E + W
dengan:
W = P × V
E = energi (joule)
W = kerja sistem (joule)
V = volume (liter)
P = tekanan (atm)
Hukum kekekalan energi menjelaskan bahwa energi tidak dapat diciptakan dan tidak dapat dimusnahkan, tetapi hanya dapat diubah dari bentuk energi yang  satu menjadi bentuk energi yang lain. Nilai energi suatu materi tidak dapat diukur, yang dapat diukur hanyalah perubahan energi (ΔE). Demikian juga halnya dengan entalpi, entalpi tidak dapat diukur, kita hanya dapat mengukur perubahan entalpi (ΔH).
ΔH = Hp – Hr
dengan:
ΔH = perubahan entalpi
Hp = entalpi produk
Hr = entalpi reaktan atau pereaksi
a. Bila H produk > H reaktan, maka ΔH bertanda positif, berarti terjadi penyerapan kalor dari lingkungan ke sistem.
b. Bila H reaktan > H produk, maka ΔH bertanda negatif, berarti terjadi pelepasan kalor dari sistem ke lingkungan.


Secara matematis, perubahan entalpi (ΔH) dapat diturunkan sebagai berikut.
H = E + W (1)
Pada tekanan tetap:
ΔH = ΔE + PΔV (2)
ΔE = q + W (3)
Wsistem = –PV (4)
Substitusi persamaan (3) dan (4) dalam persamaan (2):
H = (q + W) + PΔV
H = (q – PΔV) + PΔV
H = q
Jadi, pada tekanan tetap, perubahan entalpi (ΔH) sama dengan kalor (q) yang diserap atau dilepas (James E. Brady, 1990).
Macam-macam reaksi kimia berdasarkan kalor yang dibebaskan/kalor yang diserap (Martin S. Silberberg, 2000):
a. Reaksi kimia yang membutuhkan atau menyerap kalor disebut reaksi endoterm.
Contoh:
Reaksi pemutusan ikatan pada molekul unsur H2 adalah:
H2 → 2 H ΔH = +a kJ
Reaksi endoterm dengan ΔH bertanda positif (+).
b. Reaksi kimia yang membebaskan kalor disebut reaksi eksoterm.
Contoh:
Reaksi pembentukan ikatan pada molekul unsur H2 adalah:
2H → H2 ΔH = –a kJ
Reaksi eksoterm dengan ΔH bertanda (–).

Diagram entalpi (diagram tingkat energi)

Pengertian Ilmu Kimia

ü  Pengertian Ilmu Kimia
Ilmu kimia adalah ilmu yang mempelajari tentang peristiwa atau fenomena yang terjadi dialam, lebih spesifiknya lagi mempelajari tentang materi dan perubahan yang menyertainya.
Ilmu kimia seringkali dikatakan sebagai central sain karena pada disiplin ilmu apapun selalu berkaitan dengan kimia. Seorang ahli yang melakukan eksperimen tentang kimia dikatakan sebagai ilmuwan, dimana ilmuwan tersebut melakukan peneletian tentang perubahan materi dan perubahan yang menyertainya.
ü  Kimia dalam kehidupan kita
Kimia dalam kehidupan sehari - hari ada dimana-mana, semua yang anda rasakan, anda cium, anda cicipi adalah kimia. Ketika kamu menangis terjadi reaksi kimia, ketika kamu laper terjadi reaksi kimia, sehingga mempelajari kimia sangat penting untuk mengetahui sebenarnya apa yang terjadi didunia ini.
Kebanyakan orang salah paham dengan kimia, hal ini perlu diluruskan ( Baca: Jangan salah paham dengan kimia). Mereka menggap bahwa kimia hanya ada di labor, kimia hanya ada pada makanan berhaya. Padahal para ahli meyakini bahwa segala sesuatu di Alam ini adalah kimia.
ü  Cabang Ilmu kimia
Ilmu kimia memiliki banyak cabang-cabang ilmu diantaranya adalah ilmu kimia analitik, ilmu kimia organik, ilmu kimia anorganik, ilmu biokimia, dan kimia nuklir.
1.       Kimia analitik adalah analisis cuplikan bahan untuk memperoleh pemahaman tentang susunan kimia dan strukturnya. Kimia analitik melibatkan metode eksperimen standar dalam kimia. Metode-metode ini dapat digunakan dalam semua subdisiplin lain dari kimia, kecuali untuk kimia teori murni.
2.       Kimia organik mengkaji struktur, sifat, komposisi, mekanisme, dan reaksi senyawa organik. Suatu senyawa organik didefinisikan sebagai segala senyawa yang berdasarkan rantai karbon.
3.       Kimia anorganik mengkaji sifat-sifat dan reaksi senyawa anorganik. Perbedaan antara bidang organik dan anorganik tidaklah mutlak dan banyak terdapat tumpang tindih, khususnya dalam bidang kimia organologam.
4.       Biokimia mempelajari senyawa kimia, reaksi kimia, dan interaksi kimia yang terjadi dalam organisme hidup. Biokimia dan kimia organik berhubungan sangat erat, seperti dalam kimia medisinal atau neurokimia. Biokimia juga berhubungan dengan biologi molekular, fisiologi, dan genetika.

5.       Kimia nuklir mengkaji bagaimana partikel subatom bergabung dan membentuk inti. Transmutasi modern adalah bagian terbesar dari kimia nuklir dan tabel nuklida merupakan hasil sekaligus perangkat untuk bidang ini.

Konsep Asam Basa Arhenius

Konsep Asam Basa Arhenius
Konsep yang cukup memuaskan tentang asam dan basa, serta yang tetap diterima hingga sekarang, dikemukakan oleh Arrhenius pada tahun 1884. Menurut Arrhenius, asam adalah zat-zat yang dalam air melepaskan ion hidronium (H3O+) sedangkan basa melepaskan ion hidroksida (OH-). Larutan Asam dan Basa Misalnya, bila suatu molekul polar seperti asam klorida (HCl) dilarutkan dalam air, daerah bermuatan negatif pada molekul air menarik daerah bermuatan positif dari molekul HCl. H+ akan terpisah dari molekul yang polar dan akan terbentuk ion hidronium, H3O+, seperti ditunjukkan dalam Gambar 9. Demikian juga bila amonia dilarutkan dalam air, zat ini akan menghasilkan ion hidroksida
Dapatkah Anda menyebutkan beberapa contoh basa yang lain di laboratorium? Tentu Anda akan menyebutkan senyawa NaOH, karena NaOH juga menghasilkan ion hidroksida bila dilarutkan dalam air. Seperti halnya NaOH, kalsium hidroksida, Ca(OH)2, kalium hidroksida, KOH, dan aluminium hidroksida, Al(OH)3 merupakan contoh basa, karena menghasilkan ion
hidroksida bila dilarutkan dalam air
Berdasarkan contoh diatas, setiap molekul yang hanya dapat memberikan satu ion H3O+ disebut asam monoprotik, sedangkan yang dapat memberikan dua ion H3O+ disebut asam diprotik, dan tiga ion H3O+ disebut asam triprotik. Atau dapat dikatakan setiap molekul yang dapat memberikan lebih dari satu ion H3O+ disebut asam poliprotik.
Akan tetapi, kadang-kadang terlalu panjang untuk menuliskan pembentukan ion hidronium bila asam dilarutkan dalam air atau pembentukkan ion hidroksida bila basa dilarutkan dalam air dengan persamaan reaksi secara lengkap. Untuk itu, dapat juga digunakan bentuk
reaksi singkat, air tidak ditunjukkan dalam reaksi dan ion hidronium dituliskan dalam bentuk ion hidrogen yang terlarut dalam air (aqueous). Dalam bentuk reaksi singkat, reaksi HA dapat dituliskan sebagai berikut:


Rabu, 12 Maret 2014

Polimer Termoplastik dan Termoset

Polimer Termoplastik dan Termosetting

Polimer disebut juga dengan makromolekul merupakan molekul besar yang dibangun dengan pengulangan oleh molekul sederhana yang disebut monomer. Polimer (polymer) berasal dari dua kata, yaitu poly (banyak) dan meros (bagian – bagian).
Klasifikasi polimer salah satunya berdasarkan ketahanan terhadap panas (termal). Klasifikasi polimer ini dibedakan menjadi dua, yaitu polimer termoplastik dan polimer termoseting.
1. Polimer termoplastik
Polimer termoplastik adalah polimer yang mempunyai sifat tidak tahan terhadap panas. Jika polimer jenis ini dipanaskan, maka akan menjadi lunak dan didinginkan akan mengeras. Proses tersebut dapat terjadi berulang kali, sehingga dapat dibentuk ulang dalam berbagai bentuk melalui  cetakan yang berbeda untuk mendapatkan produk polimer yang baru.
Polimer yang termasuk polimer termoplastik adalah jenis polimer plastik. Jenis plastik ini tidak memiliki ikatan silang antar rantai polimernya, melainkan dengan struktur molekul linear atau bercabang. Bentuk struktur termoplastik sebagai berikut.
struktur-termoplastik-1
Bentuk struktur bercabang termoplastik.
struktur-termoplastik-2
Polimer termoplastik memiliki sifat – sifat khusus sebagai berikut.
-         Berat molekul kecil
-         Tidak tahan terhadap panas.
-         Jika dipanaskan akan melunak.
-         Jika didinginkan akan mengeras.
-         Mudah untuk diregangkan.
-         Fleksibel.
-         Titik leleh rendah.
-         Dapat dibentuk ulang (daur ulang).
-         Mudah larut dalam pelarut yang sesuai.
-         Memiliki struktur molekul linear/bercabang.

Contoh plastik termoplastik sebagai berikut.
-         Polietilena (PE) = Botol plastik, mainan, bahan cetakan, ember, drum, pipa saluran, isolasi kawat dan kabel, kantong plastik dan jas hujan.
-         Polivinilklorida (PVC) = pipa air, pipa plastik, pipa kabel listrik, kulit sintetis, ubin plastik, piringan hitam, bungkus makanan, sol sepatu, sarung tangan dan botol detergen.
-         Polipropena (PP) = karung, tali, botol minuman, serat, bak air, insulator, kursi plastik, alat-alat rumah sakit, komponen mesin cuci, pembungkus tekstil, dan permadani.
-         Polistirena = Insulator, sol sepatu, penggaris, gantungan baju.
2. Polimer termoseting
Polimer termoseting adalah polimer yang mempunyai sifat tahan terhadap panas. Jika polimer ini dipanaskan, maka tidak dapat meleleh. Sehingga tidak dapat dibentuk ulang kembali. Susunan polimer ini bersifat permanen pada bentuk cetak pertama kali (pada saat pembuatan). Bila polimer ini rusak/pecah, maka tidak dapat disambung atau diperbaiki lagi.
Plomer termoseting memiliki ikatan – ikatan silang yang mudah dibentuk pada waktu dipanaskan. Hal ini membuat polimer menjadi kaku dan keras. Semakin banyak ikatan silang pada polimer ini, maka semakin kaku dan mudah patah. Bila polimer ini dipanaskan untuk kedua kalinya, maka akan menyebabkan rusak atau lepasnya ikatan silang antar rantai polimer.
Bentuk struktur ikatan silang sebagai berikut.
polimer-termoseting
Sifat polimer termoseting sebagai berikut.
-         Keras dan kaku (tidak fleksibel)
-         Jika dipanaskan akan mengeras.
-         Tidak dapat dibentuk ulang (sukar didaur ulang).
-         Tidak dapat larut dalam pelarut apapun.
-         Jika dipanaskan akan meleleh.
-         Tahan terhadap asam basa.
-         Mempunyai ikatan silang antarrantai molekul.
Contoh plastik termoseting :

Bakelit    = asbak, fitting lampu listrik, steker listrik, peralatan fotografi, radio, perekat plywood.

Macam-macam Konsentrasi

Macam-macam Konsentrasi

Konsentrasi didefinisikan sebagai jumlah zat terlarut dalam setiap satuan larutan atau pelarut. Pada umumnya konsentrasi dinyatakan dalam satuan fisik, misalnya satuan berat atau satuan volume dan satuan kimia, misalnya mol, massa rumus, dan ekivalen.

1. Persen Konsentrasi
Dalam bidang kimia sering digunakan persen untuk menyatakan konsentrasi larutan. Persen konsentrasi dapat dinyatakan dengan persen berat (% W/W) dan persen volume (% V/V)
Persen berat (% W/W)
Contoh Soal
a. Dalam 100 gram larutan terlarut 20 gram zat A. Berapa persen
berat zat A
b. Berapa persen volume zat B, bila dalam 50 mL larutan terlarut 10
mL zat B.
Penyelesaian
2. Parts Per Million (ppm) dan Parts Per Billion (ppb)
Bila larutan sangat encer digunakan satuan konsentrasi parts per million, ppm (bagian persejuta), dan parts per billion, ppb (bagian per milliar). Satu ppm ekivalen dengan 1 mg zat terlarut dalam 1 L larutan. Satu ppb ekivalen dengan 1 ug zat terlarut per 1 L larutan.
Parts per million (ppm) dan parts per billion (ppb) adalah satuan yang mirip persen berat. Bila persen berat, gram zat terlarut per 100 g larutan, maka ppm gram terlarut per sejuta gram larutan, dan ppb zat terlarut per milliar gram larutan.
3. Fraksi Mol
Fraksi mol (x) adalah perbandingan mol salah satu komponen dengan jumlah mol semua komponen. Jika suatu larutan mengandung zat A, dan B dengan jumlah mol masing-masing nA dan nB, maka fraksi mol masing-masing komponen adalah:
4. Molaritas (M)

Molaritas atau konsentrasi molar (M) suatu larutan menyatakan jumlah mol spesi zat terlarut dalam 1 liter larutan atau jumlah milimol dam 1 mL larutan.

Larutan Elektrolit dan Non Elektrolit

Larutan elektrolit dan non elektrolit

Pada tahun 1884, Svante Arrhenius, ahli kimia terkenal dari Swedia mengemukakan teori elektrolit yang sampai saat ini teori tersebut tetap bertahan padahal ia hampir saja tidak diberikan gelar doktornya di Universitas Upsala, Swedia, karena mengungkapkan teori ini. Menurut Arrhenius, larutan elektrolit dalam air terdisosiasi ke dalam partikel-partikel bermuatan listrik positif dan negatif yang disebut ion (ion positif dan ion negatif) Jumlah muatan ion positif akan sama dengan jumlah muatan ion negatif, sehingga muatan ion-ion dalam larutan netral. Ion-ion inilah yang bertugas mengahantarkan arus listrik. Larutan yang dapat menghantarkan arus listrik disebut larutan elektrolit.
Larutan ini memberikan gejala berupa menyalanya lampu atau timbulnya gelembung gas dalam larutan.
Larutan elektrolit mengandung partikel-partikel yang bermuatan (kation dan anion). Berdasarkan percobaan yang dilakukan olehMichael Faraday, diketahui bahwa jika arus listrik dialirkan ke dalam larutan elektrolit akan terjadi proses elektrolisis yang menghasilkan gas. Gelembung gas ini terbentuk karena ion positif mengalami reaksi reduksi dan ion negatif mengalami oksidasi. Contoh, pada laruutan HCl terjadi reaksi elektrolisis yang menghasilkan gas hidrogen sebagai berikut.
HCl(aq)→ H+(aq) + Cl-(aq)
Reaksi reduksi : 2H+(aq) + 2e- → H2(g)
Reaksi oksidasi : 2Cl-(aq) → Cl2(g) + 2e-
Larutan elektrolit terbagi menjadi 2 macam, yaitu elektrolit kuat dan larutan elektrolit lemah
Pada larutan elektrolit kuat, seluruh molekulnya terurai menjadi ion-ion (terionisasi sempurna). Karena banyak ion yang dapat menghantarkan arus listrik, maka daya hantarnya kuat. pada persamaan reaksi, ionisasi elektrolit kuat ditandai dengan anak panah satu arah ke kanan.
Contoh :
NaCl(s) → Na+ (aq) + Cl- (aq)

Contoh larutan elektrolit kuat :
Asam, contohnya asam sulfat (H2SO4), asam nitrat (HNO3), asam klorida (HCl)
Basa, contohnya natrium hidroksida (NaOH), kalium hidroksida (KOH), barium hidroksida (Ba(OH)2)
Garam, hampir semua senyawa kecuali garam merkuri
Larutan elektrolit lemah adalah larutan yang dapat memberikan nyala redup ataupun tidak menyala, tetapi masih terdapat gelembung gas pada elektrodanya. Hal ini disebabkan tidak semua terurai menjadi ion-ion (ionisasi tidak sempurna) sehingga dalam larutan hanya ada sedikit ion-ion yang dapat menghantarkan arus listrik. Dalam persamaan reaksi, ionisasi elektrolit lemah ditandai dengan panah dua arah (bolak-balik).

Contoh :
CH3COOH(aq) ↔ CH3COO- (aq) + H+ (aq)
Contoh senyawa yang termasuk elektrolit lemah :
CH3COOH, HCOOH, HF, H2CO3, dan NH4OH
Larutan elektrolit dapat bersumber dari senyawa ion (senyawa yang mempunyai ikatan ion) atau senyawa kovalen polar (senyawa yang mempunyai ikatan kovalen polar)
Sedangkan larutan non elektrolit adalah larutan yang tidak dapat menghantarkan arus listrik dan tidak menimbulkan gelembung gas. Pada larutan non elektrolit, molekul-molekulnya tidak terionisasi dalam larutan, sehingga tidak ada ion yang bermuatanyang dapat menghantarkan arus listrik.

Contoh : larutan gula, urea